A sparse-projection computed tomography reconstruction method for in vivo application of in-line phase-contrast imaging
نویسندگان
چکیده
BACKGROUND In recent years, X-ray phase-contrast imaging techniques have been extensively studied to visualize weakly absorbing objects. One of the most popular methods for phase-contrast imaging is in-line phase-contrast imaging (ILPCI). Combined with computed tomography (CT), phase-contrast CT can produce 3D volumetric images of samples. To date, the most common reconstruction method for phase-contrast X-ray CT imaging has been filtered back projection (FBP). However, because of the impact of respiration, lung slices cannot be reconstructed in vivo for a mouse using this method. Methods for reducing the radiation dose and the sampling time must also be considered. METHODS This paper proposes a novel method of in vivo mouse lung in-line phase-contrast imaging that has two primary improvements compared with recent methods: 1) using a compressed sensing (CS) theory-based CT reconstruction method for the in vivo in-line phase-contrast imaging application and 2) using the breathing phase extraction method to address the lung and rib cage movement caused by a live mouse's breathing. RESULTS Experiments were performed to test the breathing phase extraction method as applied to the lung and rib cage movement of a live mouse. Results with a live mouse specimen demonstrate that our method can reconstruct images of in vivo mouse lung. CONCLUSIONS The results demonstrate that our method could deal with vivo mouse's breathing and movements, meanwhile, using less sampling data than FBP while maintaining the same high quality.
منابع مشابه
Fast System Matrix Calculation in CT Iterative Reconstruction
Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...
متن کاملArtifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality
Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...
متن کاملUtilization of an optimum low-pass filter during filtered back-projection in the reconstruction of single photon emission computed tomography images of small structures
Introduction:Low-pass filters eliminate noise, and accordingly improve the quality of filtered back-projection (FBP) in the reconstruction of single photon emission computed tomography (SPECT) images. This study aimed at selection of an optimum low-pass filter for FBP reconstruction of SPECT images of small structures. Material and Methods:Sp...
متن کاملECT and LS-SVM Based Void Fraction Measurement of Oil-Gas Two-Phase Flow
A method based on Electrical Capacitance Tomography (ECT) and an improved Least Squares Support Vector Machine (LS-SVM) is proposed for void fraction measurement of oil-gas two-phase flow. In the modeling stage, to solve the two problems in LS-SVM, pruning skills are employed to make LS-SVM sparse and robust; then the Real-Coded Genetic Algorithm is introduced to solve the difficult problem...
متن کاملComparing IDREAM as an Iterative Reconstruction Algorithm against In Filtered Back Projection in Computed Tomography
Introduction: Recent studies of Computed Tomography (CT) conducted on patient dose reduction have recommended using an iterative reconstruction algorithm and mA (mili-Ampere) dose modulation. The current study aimed to evaluate Iterative Dose Reduction Algorithm (IDREAM) as an iterative reconstruction algorithm. Material and Methods: Two CT p...
متن کامل